

Introduction to whole genome sequencing and online sequence analysis by CGE tools

De-mystifying WGS Jette S. Kjeldgaard (jetk@food.dtu.dk) DTU Food

Introduction to sequencing

- One methodology with numerous applications
- Routine method in many laboratories
 - Relevant for fastidious or slow-growing microorganisms
 - Relevant for hard-to-cultivate microorganisms
- Still requires a pure culture for single isolate sequencing
 - Or requires skills to handle complex metagenomics samples

✓ Diagnostics

- Additional characterisation
- ✓ Outbreak detection

Types of sequencers

- Short read technologies
 - Illumina has long been gold standard
 - Numerous types of equipment with various throughput
 - MiSeq, HighSeq, NextSeq, MiniSeq....
 - typical 150 -300 bp reads low error rate
 - Most software accepts Illumina reads or contigs
- Long reads technologies
 - Oxford Nanopore Tech. (ONT) MinION
 - PacBio
 - From 20 kbp to more than 200 kbp higher error rate
 - Less software solutions available (yet)

Reads
Reads assembled into contigs

3

Flow of sequencing

- From pure culture or specimen
- DNA extraction (plus quality/quantity control)
- Library preparation
- Sequencing
- Data quality control

Outsourcing of sequencing

DNA – largely same procedure for different types of organisms

Quality control aspects

- Sequence quality
 - Raw reads quality; length, quantity and quality scores (phred scores/fastq files)
 - Assembly; # of contigs, draft genome length, N50… (Assembly > fasta files)
- Sequence validation
 - Check for species ID
 - Check for contamination
 - (Metagenomics check for target organism, abundance ...)

Sequence ok -> proceed to analysis

The concept of CGE Tools?

- Collection of genomic tools with wide range of applications
- Some tools developed by CGE group, others are only linked
 > to have a simple and similar user interface
- Easy to use
 - Submit > get result by email > interpret
- Limited to one sequence/isolate at a time
- WGS one sequence numerous applications!
 - Does not (always) require coding skills & super-computers

Center for Genomic Epidemiology

Center for Genomic Epidemiology

Home Services Publications Contact

Overview of Services

Phenotyping

ResFinder

Identifcation of acquired antibiotic resistance genes.

ResFinderFG

Identification of functional metagenomic antibiotic resistance determinants.

LRE-finder

Identifcation of genes and mutations leading to linezolid resistance.

KmerResistance

Identifcation of acquired antibiotic resistance genes using Kmers.

PathogenFinder

Prediction of a bacteria's pathogenicity towards human hosts.

Phylogeny

<u>MINTyper</u>

Identification of SNPs with automatic filtering, masking and site validation together with inferred phylogeny based on both long and short sequencing data.

<u>CSIPhylogeny</u>

CSI Phylogeny calls SNPs, filters the SNPs, does site validation and infers a phylogeny based on the concatenated alignment of the high quality* SNPs.

<u>NDtree</u>

NDtree constructs phylogenetic trees from Single-End or Pair-End FASTQ files.

....

.

Evergreen

CGE Tools collection - overview

- Phenotyping
- Typing
- Phylogeny
- Metagenomics
- PCR tools
- Others:
 - User-defined databases
 - Identify bacteriophage sequences
 - Identify the bacterial host of phage genome

— . . .

Sequence contamination Species determination Subspecies typing Resistance genes and mutations

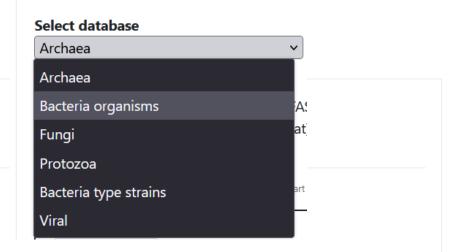
Outbreak/cluster analysis

8

CGE tools phenotyping – AMR

- Phenotyping
 - Antimicrobial resistance
 - ResFinder
 - ResFinderFG
 - identifies a resistance phenotype based on a functional metagenomic antibiotic resistance determinants database
 - Kmer resistance
 - LRE-Finder
 - Identification of genes and mutations leading to linezolid resistance

9


CGE tools Typing

- Species identification
 - KmerFinder (kmer-based)
 - SpeciesFinder (16S ribosomal DNA)
- Typing
 - MLST
 - cgMLSTFinder
 - Campylobacter, Clostridum, E. coli, Listeria, Salmonella, Yersinia
 - -pMLST
 - Serotyping (E. coli, P. aeruginosa, Salmonella)
 - PlasmidFinder
 - -MGE (Mobile genetic elements)

Example: Kmer-finder (Species ID – and more!)

KmerFinder 3.2

Service	Instructions	Output	Article abstract	Citations	
	version: 3.0.2 (20 e version: (2022-0				
	base can be down	· · · · ·	е		
Select da	atabase				
Archaea			~		

Upload file(s)

To input the sequences, upload a single FASTA file, or one/two FASTQ file(s), or one interleaved FASTQ file on your local disk by using the applet below. Both assembled genome (in FASTA format) and raw reads single end or paired end (in FASTQ format) are supported. Gzipped FASTA/FASTQ files are also supported.

If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it by clicking here.

Choose File(s)	Size	Progress	Status
	upload a single FAST	A file, or one/	/two FASTQ file(s),

Example: Kmer-finder (Species ID)

Center for Genomic Epidemiology

Your job is being processed

Wait here to watch the progress of your job, or fill in the form below to get an email message upon completion.

To get notified by email:

Notify me via email

This page will update itself automatically.

- Link to result output can be shared
- valid for a few days or a week

KmerFinder-3.2 Server - Results

KmerFinder 3.2 results:

Template NZ_LR134222.1 Escherichia coli strain NCTC11129 genome assembly, chromosome: 1	Num 134	Score 143410	Expected	Template_length 165253	Query_Coverage	Template_Coverage 87.68	 Good coverage of Query/Template = good match to database isolate
NZ_CP069706.1 Escherichia coli strain ECY44 chromosome, complete genome	20183	5165	47	157604	3.22	3.26	 A result with several hits is usual
NZ_CP034787.1 Escherichia coli strain ECCNB20- 2 chromosome, complete genome	1660	2551	48	158345	1.59	1.64	 Check for contamination from other species

Interpretation of kmer-finder result

• Explanations on how to interpret output on website

KmerFinder 3.2

Service Instructions Output Article abstract Citations

Graphical output example and explanation

Once the KmerFinder server has finished running the job you submitted, it will display an output similar to the example below.

Explanation of the standard output

An example output of the KmerFinder using the **standard** scoring method is given in the image below. This example was generated using an assembled genome of a Citrobacter freundii strain.

Explanation of the columns in star

KmerFinder 3.0 results:

Template	Num	Score	Expected	Template length	query_coverage	Coverage	Depth	tot_query_coverag
NZ_CP016952.1 Citrobacter freundii strain SL151 chromosome, complete genome	1723	127691	21	168352	71.33	76.91	0.76	71.33

Explanation of the columns in standard and extended output

The following contains a brief explanation of all columns of the output including th

Template: shows the accession numbers or name of the template sequences Assembly: RefSeq assembly accession ID Num: is the sequence number of accession entry in the KmerFinder database Score: is the total number of matching Kmers between the query and the template Expected: is the expected score, i.e.the expected total number of matching Kmers Template length: is the number of Kmers in the template Query_Coverage [%]: is the percentage of input query Kmers that match the temp Template_Coverage [%]: is the template coverage. Depth: is the number of matched kmers in the query sequence divided by the tota sequencing depth.

Example: Resfinder

ResFinder 4.1

Service	Instructions	Output	Article abstract	Citations	Overview of genes	Database history
	r identifies acquir partial DNA sequ	-		mal mutations	mediating antimicrobia	l resistance
ResFinder	r and PointFinder r database: EFSA_ ler database: (202	2021 (2022-0				
For analy:	sis part of EFSA, <u>o</u>	<mark>go to</mark> ResFind	ler-EFSA			
	omal point mut					
Acquired	antimicrobial r	esistance ge	enes 🗌			
Select sp Campylo	ecies obacter spp.*		~			
	point mutation database	exists				
Select typ	pe of your reads					

Assembled Genome/Contigs

 \sim

https://cge.food.dtu.dk/services/ResFinder/

Chromosomal point mutations 🗹

Select threshold for %ID

90 %	~
------	---

Select minimum length

60 %	v

□ Show unknown mutations, not found in the database

Acquired antimicrobial resistance genes 🗹

Select Antimicrobial configuration

Select multiple items, with Ctrl-Click (or Ond-Click on Mac) - as default all databases are selected

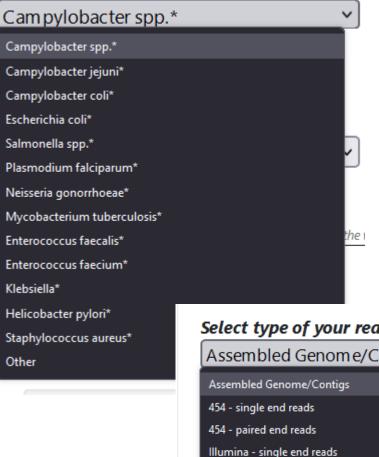
Aminoglycoside	^
Beta-lactam	
Colistin	
Disinfectant	
Fluoroquinolone	
Fosfomycin	\checkmark

Select threshold for %ID

Select minimum length

~

Example: Resfinder


ResFinder 4.1 Output Article abstract Overview of genes Database history Service Instructions Citations ResFinder identifies acquired genes and/or finds chromosomal mutations mediating antimicrobial resistance in total or partial DNA sequence of bacteria. ResFinder and PointFinder software: (2022-08-08) ResFinder database: EFSA_2021 (2022-05-24) PointFinder database: (2021-02-01) For analysis part of EFSA, go to ResFinder-EFSA Chromosomal point mutations Acquired antimicrobial resistance genes Select species Campylobacter spp.* v *Chromosomal point mutation database exists

Select type of your reads

Assembled Genome/Contigs

v

Select species

Select type of your reads

ssembled Genome/Contigs
ssembled Genome/Contigs
54 - single end reads
54 - paired end reads
lumina - single end reads
lumina - paired end reads
on Torrent
OLiD - single end reads
OLiD - paired end reads
OLiD - mate pair reads

 \sim

Resfinder output

- Species specific overview of AMR genes present
 - Prediction of class AND phenotype

escherichia coli comple	te					
Antimicrobial	Class	WGS-predicted phenotype	Genetic background			
amikacin	aminoglycoside	No resistance				
tigecycline	tetracycline	No resistance				
tobramycin	aminoglycoside	No resistance				
cefepime	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550)			
chloramphenicol	nenicol phenicol		floR (floR_AF118107)			
piperacillin+tazobactam	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550)			
cefoxitin	beta-lactam	No resistance				
ampicillin	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550), blaTEM-1B (blaTEM-1B_AY458016)			
ampicillin+clavulanic acid	beta-lactam	No resistance				
cefotaxime	beta-lactam	No resistance				
ciprofloxacin	fluoroquinolone	Resistant	gyrA (p.S83L)			
colistin	polymyxin	Resistant	mcr-1.1 (mcr-1.1_KP347127)			
sulfamethoxazole	folate pathway antagonist	Resistant	sul2 (sul2_HQ840942)			
imipenem	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550)			

DTU

Output quality dependent on input

- Gene variants and non-perfect matches
- Multiple matches in database multiple matches in output

Antimicrobial	Class	WGS-predicted phenotype	Genetic background
amikacin	aminoglycoside	No resistance	
tobramycin	aminoglycoside	No resistance	
gentamicin	aminoglycoside	No resistance	
cefepime	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550), blaTEM-29 (blaTEM-29_DQ269440)
piperacillin+tazobactam	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550), blaTEM-122 (blaTEM-122_AY307100)
cefoxitin	beta-lactam	No resistance	
ampicillin	beta-lactam	Resistant	blaTEM-1B (blaTEM-1B_AY458016), blaOXA-162 (blaOXA-162_GU197550), blaTEM-29 (blaTEM-29_DQ269440), blaTEM-122 (blaTEM-122_AY307100), blaTEM-55 (blaTEM- 55_DQ286729), blaTEM-141 (blaTEM-141_AY956335), blaTEM-57 (blaTEM-57_FJ405211), blaTEM-1C (blaTEM-1C_FJ560503), blaTEM-135 (blaTEM-135_GQ896333)
ampicillin+clavulanic acid	beta-lactam	Resistant	blaTEM-122 (blaTEM-122_AY307100)
cefotaxime	beta-lactam	Resistant	blaTEM-29 (blaTEM-29_DQ269440)
imipenem	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550)
ertapenem	beta-lactam	Resistant	blaOXA-162 (blaOXA-162_GU197550)
ceftazidime	beta-lactam	Resistant	blaTEM-29 (blaTEM-29_DQ269440)
temocillin	beta-lactam	No resistance	
meropenem	beta-lactam	Resistant	blaOXA-162 (blaOXA-162 GU197550)

- Beta-lactam resistance ampicillin
 - TEM-1B, TEM-1C, 1TEM-29, TEM-122, TEM-55, TEM-57, TEM-135, TEM-141...

DTU

1111				

blaTEM-122	Ex 99.8838559814	tendeo 861/861	d outp 1861	NODE_96_lengt h_8473_cov_28. 387970	74528312	amoxicillin, amoxi cillin+clavulanic acid, ampicillin, a mpicillin+clavulan ic acid, piperacillin, p iperacillin+tazoba ctam, ticarcillin, tic arcillin+clavulanic acid
blaTEM-55	99.8838559814	861/861	1861	NODE_96_lengt h_8473_cov_26. 387970	74528312	amoxicillin,ampici Ilin,cephalothin,pi peracillin,ticarcilli n
blaTEM-209	99.8838559814	861/861	1861	NODE_96_lengt h_8473_cov_26 387970	74528312	unknown beta- lactam
blaTEM-1B	99.8838559814	861/861	1861	NODE_96_lengt h_8473_cov_26. 387970	74528312	amoxicillin,ampici Ilin,cephalothin,pi peracillin,ticarcilli n
blaTEM-141	99.8838559814	861/861	1861	NODE_96_lengt h_8473_cov_16. 387970	74528312	amoxicillin,ampici Ilin,cephalothin.pi peracillin,ticarcilli n
blaOXA-162	100.0	798/798	1798	NODE_163_leng th_2231_cov_6.1 64122	26823	amoxicillin,ampici Ilin,cefepime,erta penem,imipenem ,meropenem,pipe racillin,piperacilli n+tazobactam
blaTEM-57	99.8838559814	861/861	1861	NODE_96_lengt h_8473_cov_26. 387970	74528312	amoxicillin,ampici Ilin,cephalothin,pi peracillin,ticarcilli n
blaTEM-29	99.8838559814	861/861	1861	NODE_96_lengt h_8473_cov_26. 387970	74528312	amoxicillin, ampici llin, aztreonam, ce fepime, cefotaxim e, ceftazidime, ceft riaxone, piperacilli

- All the TEM- genes are in fact the same gene
- placed on (contig/) NODE_96 in position 7452-8312.
- None of them have a perfect match, so it is likely a new variant, bad sequence or at least something that wasn't recognized by the database.
- Try running on raw reads (fastq) instead of contigs (fasta)

n.ticarcillin

Illumina fastq/fasta

• Almost all the CGE tools are available for Illumina reads/fasta files

ΤοοΙ	Result
KmerFinder	Species identification/confirmation and check for contamination
ResFinder (Incl. PointFinder)	Identification of acquired resistance genes and point mutations, phenotype prediction
PlasmidFinder/MGEFinder	Predicting presence of plasmids/relation to resistance genes
MLST	Sub-species level typing and check for contamination
CSIPhylogeny	Cluster detection and SNP calling
etc	

Some tools can also analyse ONT MinION data including:

ΤοοΙ	Result
KmerFinder	Species identification/confirmation and check for contamination
KmerResistance	Identification of acquired resistance genes
MinTyper	Cluster detection and SNP calling

CGE tools Typing

- Species identification
 - KmerFinder (kmer-based)
 - SpeciesFinder (16S ribosomal DNA)
- Typing
 - MLST
 - cgMLSTFinder
 - Campylobacter, Clostridum, E. coli, Listeria, Salmonella, Yersinia
 - -pMLST
 - Serotyping (E. coli, P. aeruginosa, Salmonella)
 - PlasmidFinder
 - -MGE (Mobile genetic elements)

Serotyping

SeqSero 1.2

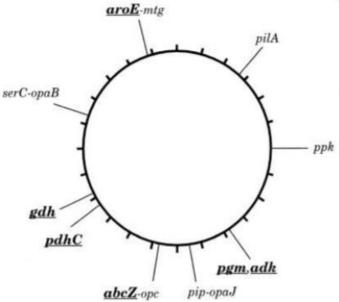
Service	Instructions	Output	Article abstract	Citations						
	SeqSero predicts the Salmonella serotype of either the pre-assembled or raw read sequence data provided to the service. Note: This service is hosted by CGE but all credit and scientific questions should be given to the original authors from Deng Lab (SeqSero).									
	More info on Salmonella serotypes From Deng Labs website									
Software version: Available on GitHub here Download the Salmonella determinants databases from: Deng Labs website (zip file)										
Select Da Assembl	ata type ed Genome/Con	tigs	~							
H Ch	oose File(s)									

Serotype result

SeqSero-1.2 Server - Results

SeqSero-1.2 Server - Results

Serotype:


Illa 13,22:z4,z23:- or Ajiobo or Ried or Illa 13,23:z4,z23,[z32]:-*

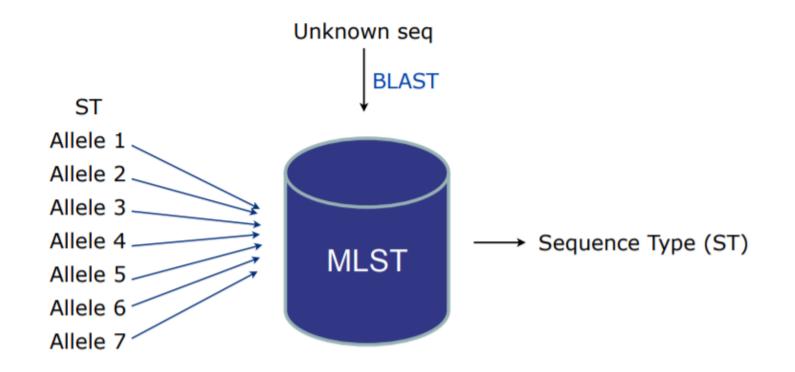
Antigenic profile	13:z4,z23:-
O antigen	0-13
H1 antigen	z4,z23
H2 antigen	-

Multi-Locus Seqence Typing (MLST)

Classical MLST:

- The golden standard for typing
- First developed in 1998 for Neisseria meningitis (Maiden et al. PNAS 1998. 95:3140-3145)
- The nucleotide sequence of internal regions of app. 7 housekeeping genes are determined by PCR followed by Sanger sequencing
- Different alleles are each assigned a random number
- The unique combination of alleles is the sequence type (ST)

MLST now


- For many bacterial species, MLST is considered the gold standard of typing
 - It is traditionally performed in an expensive and time-consuming way

- As the cost of WGS continue to decline, it becomes increasingly available to scientists and routine diagnostics laboratories
 - Currently, the WGS cost is typically below that of traditional MLST

7 x PCR and sequencing vs. 1 x WGS

MLST Typing by WGS

MLST result output

MLST-2.0 Server - Results

mlst Profile: Imonocytogenes

Sequence Type: 6

Organism: Listeria monocytogenes

One limitation: ONE variation in bases of one of the seven genes: new allele number = different ST

Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele
abcZ	100	100	537	537	0	abcZ_3
bglA	100	100	399	399	0	bgIA_9
cat	100	100	486	486	0	cat_9
dapE	100	100	462	462	0	dapE_3
dat	100	100	471	471	0	dat_3
ldh	100	100	453	453	0	ldh_1
lhkA	100	100	480	480	0	lhkA_5

extended output

Input Files: Lm02.fa

Why limit to SEVEN genes when we sequence the whole genome?

-> core genome MLST

cgMLST – core genome

- Core genome = genes common for all (almost) within the species
 - Salmonella has approx. 5000 genes, hereof >3000 are selected for the cgMLST

Locus	Identity	Coverage	Alignment Length	Allele Length	Gaps	Allele
abcZ	100	100	537	537	0	abcZ_3
bglA	100	100	399	399	0	bgIA_9
cat	100	100	486	486	0	cat_9
dapE	100	100	462	462	0	dapE_3
dat	100	100	471	471	0	dat_3
ldh	100	100	453	453	0	ldh_1
lhkA	100	100	480	480	0	lhkA_5
Gene08						
Gene09						
Gene10						
Gene11						
Gene12						
Gene13						
Gene14						
Gene15						
Gene16						
Gene17						
Gene18						
Gene19						
Gene20						

Each gene variant has an allele number Each allele combination has a **cg ST** assigend based on the cgMLST scheme

By cgMLST very closely related genomes are 'lumped' together in a Complex Type (CT)

Can also be used to interpret clusters

Whole genome based phylogeny

- Single Nucleotide Polymorphism (SNP)
 - -Require reference genome
- Gene-by-gene approach
 - -cgMLST core genome MLST/wgMLST whole genome MLST
 - -No reference genome required
 - -Require species specific cgMLST scheme
- What is phylogeny used for?
 - -Classify taxonomy the classic use
 - -Outbreak detection detection of clones increasing with WGS data

Focus on (CSI)phylogeny

- Phylogenetic comparisons allow for determining clusters and clonal spread of microorganisms
- SNP calling to determine variants in the DNA (Single Nucleotide Polymorphism)
- Different sequencing technology has a systematic bias making integration of data generated from different platforms difficult.
 - CSIPhylogeny has incorporated two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms

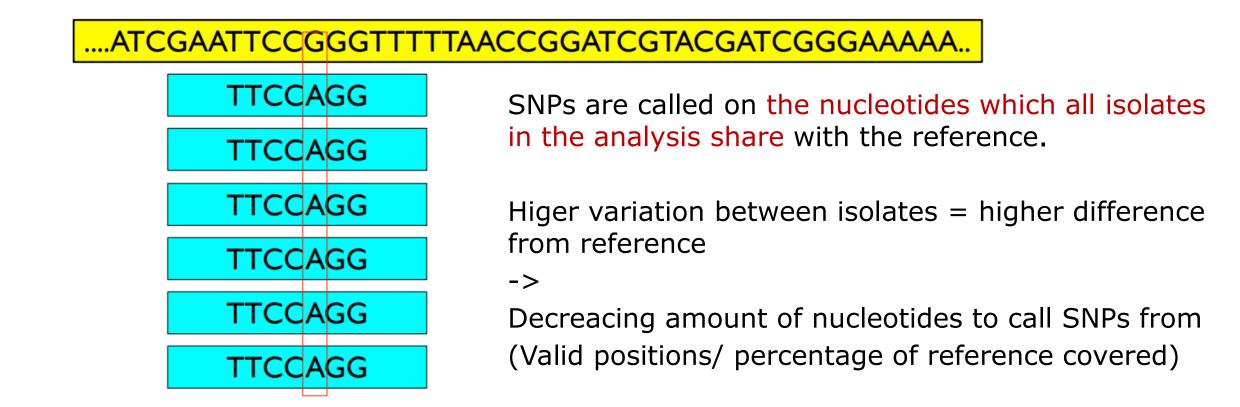
CSI Phylogeny 1.4 (Call SNPs & Infer Phylogeny)

CSI Phylogeny calls SNPs, filters the SNPs, does site validation and infers a phylogeny based on the concatenated alignment of the high quality* SNPs.

https://cge.food.dtu.dk/services/CSIPhylogeny/

Data quality and SNP calling

- Good data quality ensures reliability of your analysis
 - Poor quality sequences can rarely be used for SNP analysis
- For assembled contigs good coverage is essential (≥30x)
- Consider the quality of your raw data (specifically phred scores)
- CSI Phylogeny SNP filtering criteria:
- SNP quality: ≥30 (Phred score, base call accuracy: 99.9%)
- SNPs with a sequence depth of <10 are removed
- A SNP is removed if it is <10 bps from the nearest SNP (Pruning) (recombination do not reflect naturally evolved SNPs)


Preferably analyse raw reads for better resolution!

DTU

SNPs detection (CSIPhylogeny)

- Calling of single nucletide polymorphism
 - Variants in the DNA compared to reference

Title

DTU

Ξ

Cluster analysis tools

- Upload of reference genome (fasta file)
- Change parameters
 - Or go with standard settings
- Upload of additional files
 - Either fasta or fastq files can be used
- Wait for analysis result
 - (or type in email address)

	Input data	•
	Upload reference genome (fasta format) Note: Reference genome must not be compressed.	+
1	Gennemse) Ingen fil valgt. Include reference in final phylogeny.	
ī	Select min. depth at SNP positions	
	_10x v	
	Select min. relative depth at SNP positions	
	Select minimum distance between SNPs (prune)	
	10 bp v	
	Select min. SNP quality	
	30 V	
	Select min. read mapping quality	
	25 ~	
	Select min. Z-score	
	1.96 v	
	□ Ignore heterozygous SNPs	
	Comment (to yourself) This comment will appear unaltered on your output page. It has no effect on the analysis.	
	Use altered FastTree (more accurate) Note: Read more here	
	Upload read files and/or assembled genomes (fasta or fastq format)	
	Note: Read files must be compressed with gzlp (compressed files often ends with .gz). If you get an "Access forbidden. Error 403": Make sure the start of the web adress is https and not just http. Fix it	
	P Isolate File	
	Name	
	Title	

DTU

Cluster analysis outputs

• SNP matrix

- Shows pairwise variations between tested sequences

	EC1	EC2	EC3	EC4	EC5	EC6	EC7	EC8	EC9	EC10	EC11	EC12
EC1	O	2176	2122	2180	2176	5 2176	216	2280	2179	2179	2182	2184
EC2	2176	0	94	80	78	8 78	2212	644	81	81	84	86
EC3	2122	94	0	98	96	96	2170	662	99	99	102	104
EC4	2180	80	98	0	38	38	2222	604	41	41	44	46
EC5	2176	78	96	38	С	2	2218	598	5	5	8	10
EC6	2176	78	96	38	2	2 0	2218	598	5	5	8	10
EC7	216	2212	2170	2222	2218	2218	0	2322	2221	2221	2224	2226
EC8	2280	644	662	604	598	598	2322	0	601	601	604	606
EC9	2179	81	99	41	5	5 5	2221	601	0	0	3	5
EC10	2179	81	99	41	5	5 5	2221	601	0	0	3	5
EC11	2182	84	102	44	8	8 8	2224	604	3	3	0	8
EC12 min: 0 max: 2322	2184	86	104	46	10	10	2226	606	5	5	8	0

Cluster analysis output

• Newick file – distance matrix for visualisation with various tools

Take home messages

- Numerous free, online tools available for diagnostics and comparison of microorganisms
- CGE tools offers a broad range of tools
- Different types of sequencers generate different types of data
- Sequence files generally available as fasta and/or fastq files
 Some tools are restricted to one type

Thank you for the attention!

• Questions or comments?

Jetk@food.dtu.dk