

FWD AMR-RefLabCap

Update on current EQAs of AST on Salmonella and Campylobacter Jeppe Boel, SSI

First network meeting 30 November 2021

- ECDC EQA-AST on Salmonella and Campylobacter organized by Statens Serum Insitut
- Presentation of the set-up
- Accumulated results 2018-2020 DD and MIC
- DNA based results 2020 (EQA-AST6)
- Conclusins
- Questions

Aims:

- support the implementation of the harmonized EU AST protocol for Salmonella and Campylobacter
- To asses the quality of the AST data obtained using MIC and/or DD methods in NPHRLs across Europe
- allow evaluation of new molecular based methodologies (WGS, PCR etc.)
- evaluation of serotyping of Salmonella and species identification of Campylobacter

Objectives:

- identify common laboratory problem(s)
- assess the overall comparability of routinely collected AST results from European NPHRLs

Protocol

TECHNICAL DOCUMENT

EU protocol for harmonised monitoring of antimicrobial resistance in human *Salmonella* and *Campylobacter* isolates

June 2016

https://www.ecdc.europa.eu/sites/default/files/media/en/publications/ Publications/antimicrobial-resistance-Salmonella-Campylobacterharmonised-monitoring.pdf

Laboratories in the FWD-Net from EU/EEA and laboratories from "enlargement" countries invited to participate – most laboratories accepts the invitation

Salmonella

- Eight strains for AST testing DD and/or MIC
- Possible to report ESBL-, acquired AmpC-, and carbapenemase status both pheno- and genotypes
- Possible to report predicted results (WT/NWT) from molecular analysis
- Possible to report serotyping results

Campylobacter

- Five strains AST testing and species determination
- Possible to report DD and MIC results
- Possible to report predicted results (WT or NWT) from molecular analysis

EQA-AST – FEEDBACK AND REPORTING

Individual feedback provided to all participants

Salmonella: MIC results within +/- one dilution difference and DD results within +/- 3 mm difference from the expected results are evaluated as correct

Campylobacter: MIC results within +/- one dilution difference and DD results within +/- 4 mm difference from the expected results are evaluated as correct

ESBL/AmpC/carbapenemase pheno- and genotypic results evaluated case by case

Predicted genotypic results evaluated against phenotypic qualitative results using ECOFF's

Report summarizing the results of the EU/EEA countries are produced

Overview of correct results using DD/MIC for Salmonellans from 2018-2020 – all participating laboratories

Overview of results using DD/MIC for Campylobacter from 2018-2020 – all participating laboratories

MIC: CORRECT RESULTS FOR SALMONELLA 2018-2020 BY STATENS LABORATORY (BOTH MBD AND GS RESULTS)

DD: CORRECT RESULTS FOR *SALMONELLA* 2018-2020 BY LABORATORY

STATENS

SERUM

MIC: CORRECT RESULTS FOR CAMPYLOBACTER STATENS 2018-2020 BY LABORATORY (BOTH MBD AND GS RESULTS) TITUT

....

DD: CORRECT RESULTS FOR CAMPYLOBACTER 2018-2020 BY LABORATORY

EQA6-AST Genotypic characterization of ESBL-, acquired TATENS SERUM AmpC, and carbapenemase genes

Strain	Expected genetype	Method used for	Genotype predicted
	Expected genotype	genotype prediction	(number of laboratories)
S20.0005		WGS	CTX-M-65 (6)
		PCR/sequencing	CTX-M-65 (1)
	СТХ-М9/65*	PCR	СТХ-М-9 (3)
		PCR	CTX-M positive (1)
		In house Luminex assay	CTX-M-9 group (1)
		PCR	CTX4 (1)
		Total	13
		WGS	CTX-M-55 (6)
		PCR/sequencing	CTX-M-55 (1)
S20.0006	blaCTX-M-55	PCR	CTX-M (4)
		PCR	CTX1,CTX2 (1)
		In house Luminex assay	CTX-M-15 (1)
		PCR/sequencing	CTX1,CTX2
		Total	14
		WGS	СТХ-М-9 (6)
	СТХ-М-9	PCR/sequencing	СТХ-М-9 (2)
		PCR	СТХ-М9 (3)
S20.0006		PCR	CTX-M (1)
		PCR	CTX4 (1)
		In house Luminex assay	CTX-M9 (1)
		Total	14
		WGS	СТХ-М-123 (6)
	СТХ-М-123	PCR/sequencing	CTX-M-123 (1)
		PCR/sequencing	CTX-M-128 (1)
C20.0008		PCR	CTX-M-9
		PCR	СТХ-М (3)
		PCR	CTX2 (1)
		In house Luminex assay	CTX-M-15 (1)
		Total	14
	Grand total	55	

Approximately half of the laboratories report results.

Generally the laboratories are able to identify the correct genes

Results reflects that there is no standardized method available

WGS applied by 6 laboratories – all reporting correct

PCR and PCR in combination with sequencing is also working

*both results correct

EQA6-AST (2020) SALMONELLA PREDICTED

Predicted phenotypes from WGS data by antimicrobial									
Antimicrobial	Correct	Incorrect	Incorrect NWT	Incorrect WT	Total				
Ampicillin	40				40 (100%)				
Azithromycin	20	4	4		24 (83%)				
Cefepime	16				16 (100%)				
Cefotaxime	46	2		2	48 (96%)				
Cefoxitin	32				32 (100%)				
Ceftazidime	14	2		2	16 (88%)				
Chloramphenicol	24				24 (100%)				
Ciprofloxacin	36	4	4		40 (90%)				
Colistin	22	11	8	3	33 (67%)				
Ertapenem	24				24 (100%)				
Gentamicin	23	1	1		24 (96%)				
Meropenem	48				48 (100%)				
Nalidixic acid	16	4	3	1	20 (80%)				
Sulfamethoxazole	24				24 (100)				
Temocillin	7	1	1		8 (885)				
Tetracycline	35	3		3	38 (92%)				
Tigecycline	8				8 (100%)				
Trimethoprim	24				24 (100%)				
Total	459	32	21/241	11/250	491 (93%)				

EQA-AST6 (2020) CAMPYLOBACTER PREDICTED STATENS PHENOTYPES FROM WGS – DATA FROM 4 LABORATORINES

Predicted phenotypes from WGS data by antimicrobial									
	Correct	Incorrect	Incorrect NWT	Incorrect WT	Total				
Ciprofloxacin	15	5	3	2	20				
Erythromycin	16	4	4		20				
Tetracycline	9	6	6		15				
Gentamicin	7	13	1	12	20				
Total	47	28	14/37	14/38	75				

Conclusions

- The NPHRL are participating in the EQAs
- The quality of the AST data from the laboratories are constant
- Some laboratories performs better than others there is a best practice
- Dilution based methods superior to diffusion based
- The data produced in the different countries are comparable
- More laboratories could deliver DNA based results
- Synergy to this project

THANK YOU FOR YOU ATTENTION