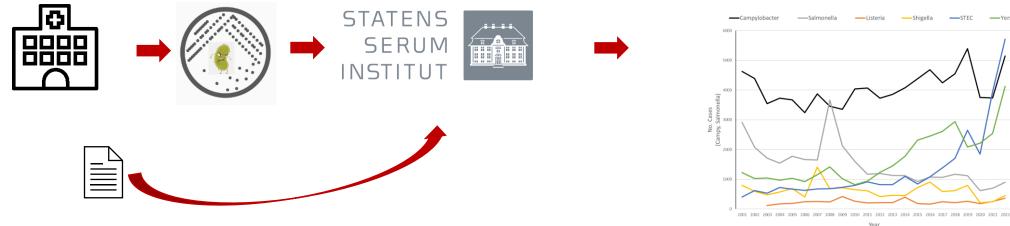
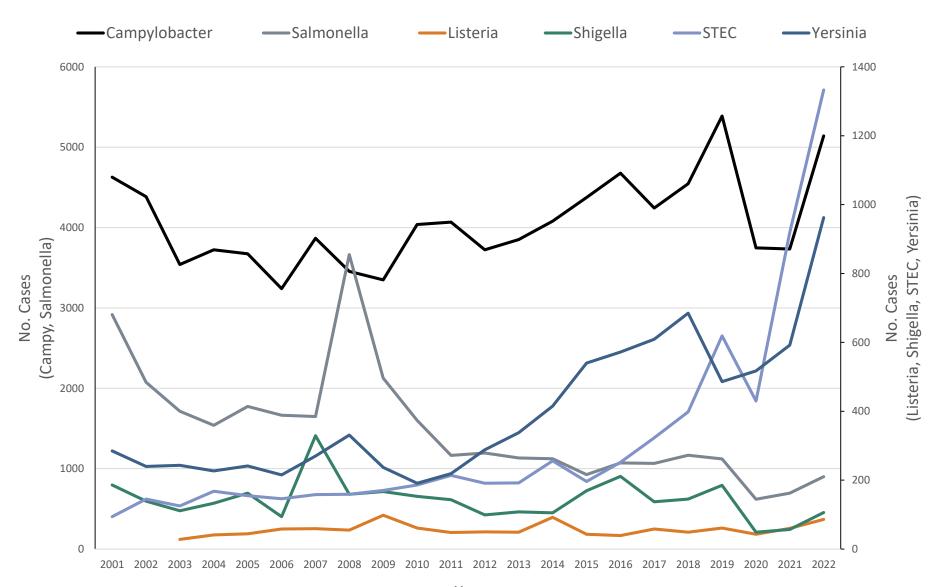
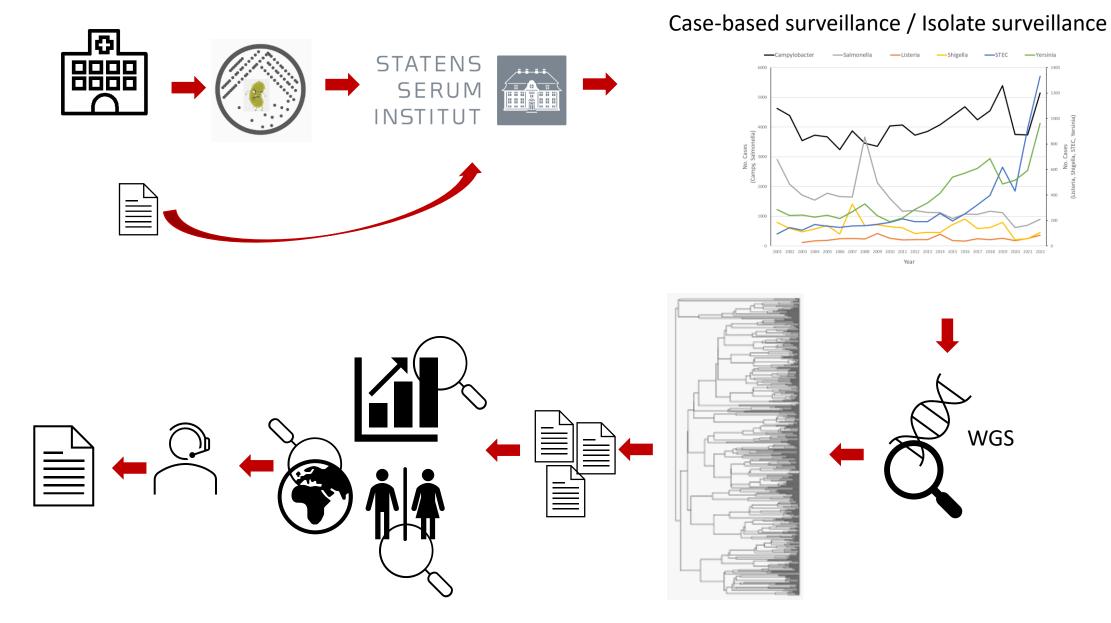


Experience on cross-sector collaboration, Denmark


Susanne Schjørring, Public Health Microbiologist, Statens Serum Institut, Denmark


Surveillance of foodborne pathogens

____ Yersinia



Surveillance of foodborne pathogens

Epidemiologist and Microbiologist at SSI

Weekly physical meetings

• Every cluster/outbreak signal is discussed in detail

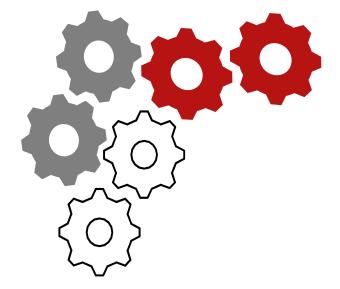
Public Health Sector

- Local laboratories at the hospitals (Diagnostics)
- Statens Serum Insitut (National surveillance)
- Danish Patient Safety Authority (STPS)
- Danish Health Authority (SST)
- Danish Medicines Agency (LMST)

The Centrale Outbreak Group (DCUG)

Statens Serum Institut (SSI)

- Microbiologist
- Epidemiologist


Danish Veterinary and Food Administration (DVFA)

- Liaison officer
- Preparedness group
- Zoonosis group
- Microbiologist

- National Food Institut (DTU food)
 - Epidemiologist
 - Secretary

Steering group with representative from all three institutions and Danish Patient Safety Authority (STPS)

DCUG purpose

- Coordinate the investigation
- Stop outbreaks reduce number of cases
- Prevent new outbreaks
- Enhance information flow about food safety
- Improve surveillance
- Enhance the public belief in the public health sector/food sector
- National collaboration
- Outbreak investigation manual (in Danish)

DCUG meetings

Weekly meetings

- Fixed agenda and summary
- Every outbreak is discussed in detail

Descriptive epidemiology

- Time, place and gender, etc.
- Interview data
- shopping receipt

Control visits

Microbiology

- Use WGS to identify cluster/outbreaks
- Comparison of sequences of isolates from human and food/environmental samples (by use of WGS – cgMLST and SNP)

Traceback of food items

Standing together

"One unit"

- Despite the different areas of expertise
- Despite different Authorities

Coordinated press releases related to the outbreak

• Often identical

During interviews

- DVFA staff can talk about the human cases
- SSI staff can talk about the source identified

Myndighedsarbejdet til koordinering af Zoonoser

~ The authority's work for the coordination of zoonoses

• All other zoonoses beside the Foodborne

national sequence based Surveillance Of Foodborne Infections

- Joint real time sequence based surveillance
- Owned by SSI and DVFA, DTU is collaborative partner
- Legal issues needed to be resolved (GDPR) (Cooperation agreement, Data processor agreement, Shared data responsibility)

Status:

- Automated import of sequences
- Meta-data is imported automatically
- Quality cheek (Bifrost)
- Analysis (Species, subspecies, ST, serotype)
- Approved results is transferred back to the "owners" systems
- Next phase:
 - Resistance (ResFinder)
 - Comparisons (cgMLST, ChewBBACA, "nearest neighbor" selection / SNP, CSI Phylogeny)
 - Visualization tool (Microreact)

Front-end SOFI (meta data - human)

																		9
letadata filter Date_sample	Ø Sequence_ID: 1912T	00182_N_WGS_1007_SSI	OR 1911W0014	6_N_WGS_1007_SS	SI OR 1912F00428_N_	WGS_1007_SSI									×	Q tes	t	
From To	🗄 Select 🗸 Appro	ove 🛇 Reject 🌣																*
nstitution	Sequence_ID	t Run_ID	t Institution	Date_sample	t Primary_isolate t	CPR no. t N	I/F t Name	e	t Age t	Travel t	Travel_origin ‡	KMA t	KMA_region	t Date_received	Date receive	d KM.		
Select 🗸 🗸	□ ©1912T00182_N_WG	-		2019-12-26	true	ĸ		ensen, Freja					SYDDANMARK	_	2019-12-27			
oject_title Project_no	□ ©1912F00428_N_WG			2019-12-20	true	ĸ		sen, Anna	88 J	-	SPANIEN	KMA HEH/HVH/HIL			2019-12-14			
elect 🗸 Select 🗸	□ ©1911W00146_N_WG			2019-11-20	titte	ĸ		sen, Alma				KMA Rigshospitalet			2019-11-21			
te_received		N_WG3_1001	221	2013-11-20		ĸ	50118115	sen, Anna	00 0	Kenut	+ OOPLISI	KINA Kigshospitalet	TOVEDSTADEN	2015-11-25	2013-11-21			
From To																		
imal																		
elect 🗸 🗸																		
in_ID Isolate_ID																		
elect 🗸 Select 🗸																		
PR_no.																		
PR_no. Select v																		
	Date sample	e t Primary	isolate t	CPP no	t M/F	t Name		lae t	Travel t	Тгана	el origin	KMA	t K	MA region	t Date	received	Date receive	d KM
elect D_no. Cluster_ID	Date_sample	e t Primary_	isolate ‡	CPR_no.	t M/F	t Name	t A	Age t	Travel t	Trave	el_origin	t KMA	t K	MA_region	† Date	e_received	Date_receive	d_KN
elect V D_no. Cluster_ID elect V Select V	Date_sample	e t Primary_	isolate †	CPR_no.	t M/F	t Name Christensen, Fi				Trave		KMA KMA Vejle		MA_region DDANMARK	t Date 2019-	-	Date_receive	d_KN
elect V	2019-12-26	true	isolate t	CPR_no.	K	Christensen, F	reja 70	D N	lej	DANN	IARK	KMA Vejle	SY	DDANMARK	2019-	12-31	2019-12-27	d_KN
Ject V D_no. Cluster_ID Ject V Select V Ilysis filter provided_species			isolate t	CPR_no.			reja 70	D N	lej		IARK		SY	DDANMARK		12-31		d_KI
elect V D_no. Cluster_ID elect V Select V slysis filter _provided_species	2019-12-26	true	isolate t	CPR_no.	K	Christensen, F	reja 70 a 88	D N B Ja	lej a	DANN	/ARK IEN	KMA Vejle KMA HEH/H	SY /H/HIL HC	DDANMARK DVEDSTADEN	2019-	12-31 12-18	2019-12-27	d_KI
elect V D_no. Cluster_ID Elect V Select V	2019-12-26 2019-12-13	true	isolate t	CPR_no.	ĸ	Christensen, Fi Pedersen, Ann	reja 70 a 88	D N B Ja	lej a	DANM SPANI	/ARK IEN	KMA Vejle	SY /H/HIL HC	DDANMARK DVEDSTADEN	2019- 2019-	12-31 12-18	2019-12-27 2019-12-14	:d_KI
elect V D_no. Cluster_ID elect V Select V alysis filter _provided_species elect V	2019-12-26 2019-12-13	true	isolate t	CPR_no.	ĸ	Christensen, Fi Pedersen, Ann	reja 70 a 88	D N B Ja	lej a	DANM SPANI	/ARK IEN	KMA Vejle KMA HEH/H	SY /H/HIL HC	DDANMARK DVEDSTADEN	2019- 2019-	12-31 12-18	2019-12-27 2019-12-14	ed_KI
ect V no. Cluster_ID ect V Select V hysis filter provided_species ect V type_final	2019-12-26 2019-12-13	true	isolate t	CPR_no.	ĸ	Christensen, Fi Pedersen, Ann	reja 70 a 88	D N B Ja	lej a	DANM SPANI	/ARK IEN	KMA Vejle KMA HEH/H	SY /H/HIL HC	DDANMARK DVEDSTADEN	2019- 2019-	12-31 12-18	2019-12-27 2019-12-14	ed_K

Front-end SOFI (meta data - DVFA)

∷ Select ✓ Approve ⊘ R	eject 🗭									
Sequence_ID t	Run_ID t	Institution ‡	Date_sample t	Project_no t	Product_type t	Product t	Origin t	Animal t	Info_sample	t
□ ^C ² 1911S00249_N_WGS_1007_SSI	N_WGS_1007	SSI	2019-11-23	1						

+ CHR (Crew) Aut no. (Number of authorized companies)

Front-end SOFI (QC data)

: Select	✓ Approve	⊘ Reject	٥												*
Sequence_ID		t 🗆	QC_final	t qc_action t	QC_failed_tests t	QC_provided_species	QC_DB_ID t	QC_genome1x #	QC_genome10x ‡	QC_Gsize_diff1x10	QC_avg_coverage	QC_ambiguous_sit	QC_num_reads t	QC_main_sp_plus_u	QC_unclassified_re QC_u
🗆 🖾 1912T001	82_N_WGS_1007	_SSI A		ок		Salmonella enterica	Salmonella enterica	4801964	4801964	0	80.18386622640236	436	0	0.9891135709726657	0.058910014453914453
C [*] 1912F004	28_N_WGS_1007	SSI		supplying lab	Atypical genome size (x1):	dCampylobacter jejuni	Campylobacter jejuni							0.9961916135520616	0.0238644902492071
C C 1911W00	146_N_WGS_1007	7_SSI A		ОК		Campylobacter jejuni	Campylobacter jejuni	1713048	1713048	0	572.1356255049479	199	0	0.988238382206337	0.023964794935577257
* [] [] 2009Т002	35_N_WGS_1002	_SSI _A		ок		Salmonella enterica	Salmonella enterica	4773969	4773969	0	50.78009367048676	5055	0	0.9975581306750664	0.054785415413646546

Front-end SOFI (ST ..)

🗄 Select 🗸 Appro	ove	S Reject	٥									
Sequence_ID		t ST	t	□ ST_final ‡	ST_alleles t	Species_final 1	Subspecies t	Sero_enterobase ‡	Sero_seqSero t	Serotype_final	sero_antigen_seqs	Sero_D-tartrate t
□ ௴1911S00249_N_WG	S_1007_	SSI 16		16	aroC: 6, dnaN: 7, hemD: 10, hisD: 10, purE: 8, sucA: 10, thrA: 14	Salmonella enterica	enterica	Virchow	Virchow	Virchow	7:r:1,2	000000000000000000000000000000000000000

And the work continues Next phase (Res & Comparison/ Visualization)

Annual report on Zoonoses in Denmark

DVFA, SSI and DTU

Contents

Int	roduction
1.	Food- and waterborne outbreaks
2.	Influenza A virus in pigs and birds in Denmark
З.	Burden of COVID-19 in the first full year of the pandemic in Denmark
4.	Vectorborne zoonoses
5.	<i>Toxoplasma gondii</i> - an important foodborne parasite, also in Denmark 21
6.	6.1 Surveillance of human disease6.2 Outbreaks of zoonotic gastrointestinal infections6.3 Surveillance and control of animals and animal products
	6.4 Official testing of zoonotic pathogens in foodstuffs

https://www.food.dtu.dk/english/publications/disease-causingmicroorganisms/zoonosis-annual-reports

SFRUM **DANMAP** (Danish Integrated Antimicrobial Resistance Monitoring and Research Programme) INSTIT

Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark (DVFA, SSI and DTU)

Table of contents

Editorial

3

7.

Introduction to DANMA 2.1 The DANMAP surveillance syste 2.2 2.3 Information on animal population and food production syste 2.4 One Health AMR - new 3.1 3.2 notypic resistance in indicator and clinical from UTI natients in primary health care Genotypic comparison of ESBL E. coli from livestock animals, meat and 3.3 Evaluating the "Onehealth-ness" of DANMAP Textbox 3.1 Textbox 3.2

Update from International Centre for Antimicrobial Resistance Solution Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in the the role of hedgehogs and antibiotic-producing dermatophytes

Textbox 3.4 Clostridioides difficile - investigating genetic overlap between human a

Antimicrobial consumption in animal

	Highlights
4.1	Introduction
4.2	Total antimicrobial consumption in animals.
4.3	Antimicrobial consumption by animal species
Textbox 4.1	The new VetStat
Textbox 4.2	New legislation on antibiotic treatment of mastitis
	-

Antimicrobial consumption in humans

Resistance	e in zoonotic bacteria and animal pathogens
Textbox 5.3	Consumption of antimicrobials in the Faroe Islands
Textbox 5.2	Antimicrobial consumption for elderly living in care homes
Textbox 5.1	National Action Plan on the reduction of antibiotics in humans, 2017-2
5.4	Hospital care
5.3	Primary health care
5.2	Total antimicrobial consumption in the Danish healthcare systems
5.1	Introduction
	Highlights

Highlights

6.1	Resistance in zoonotic bacteria
6.2	Resistance in pathogenic bacteria from pigs.
Textbox 6.1	Surveillance of antimicrobial resistance in clinical pathogens of anima
	Description of a table Conserver Investation with CADE Met

Resistance in indicator bacteria

	Highlights
7.1	Introduction
7.2	Indicator Escherichia coli
7.3	ESBL/AmpC- and carbapenemase-producing E. coli.
7.4	Indicator Enterococci

istance	e in human pathogens
	Highlights
	Introduction
L	Surveillance based on data from the Danish Microbiology Database (MiBa)
2	Surveillance based on data from the reference laboratories
3	Number of invasive cases
	Results from MiBa data surveillance
L	Escherichia coli.
2	Klebsiella pneumonia.
3	Pseudomonas aeruginosa
4	Acinetobacter species
5	Enterococci
	Results from the reference laboratories
L	Characterization of ESBL- and pAmpC-producing Escherichia coli from bloods
2	Carbapenemase-producing organisms (CPO)
3	Vancomycin-resistant/vancomycin-variable enterococci
4	Linezolid-resistant/linezolid-vancomycin-resistant enterococci
5	Streptococcus pneumoniae
5	Beta-haemolytic streptococci
7	Staphylococcus aureus
3	Neisseria gonorrhoeae.
9	Haemophilus influenzae
box 8.1	Increasing terbinafine resistance in Danish Trichophyton isolates 2019-202
terials	and methods

STATEN

9.1

81

8.1.

8.1.

81.

8.2

8.2.3

8.2.

8.2.3

8.2.4

8.2.

8.3

8.3.

8.3.

8.3.3

8.3.4

8.3.

83 8.3.

8.3. 83 Text

9.1	General information
9.2	Data on antimicrobial consumption in animals
9.3	Collection of bacterial isolates from animals and meat.
9.4	Microbiological methods - isolates from animals and meat
9.5	Susceptibility testing - isolates from animals and meat
9.6	Whole genome sequencing - isolates from animals and meat
9.7	Data handling - isolates from animals and meat
9.8	Data on antimicrobial consumption in humans
9.9	Salmonella and Campylobacter isolates from humans
9.10	Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetob
	Enterococcus faecium and Enterococcus faecalis isolates from humans
9.11	ESBL-producing bacterial isolates from humans
9.12	CPO isolates from humans
9.13	VRE isolates from humans.
9.14	Invasive Streptococcus pneumonioe isolates from humans
9.15	Isolates of beta-haemolytic streptococci of groups A, B, C, and G from invasi
9.16	Invasive Hoemophilus influenzoe isolates from humans
9.17	Staphylococcus aureus including MRSA isolates from humans
9.18	Gonococci isolates

10.	Terminology
	List of abbreviations
	Glossary

Thank you

Questions?