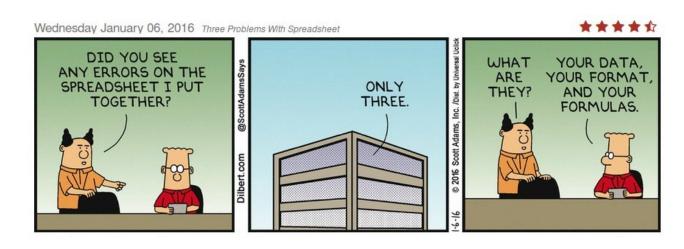


Implementing ISO 23418:2022 for data management in laboratories


Dr. Peter Evans¹ & Dr. Emma Griffiths²

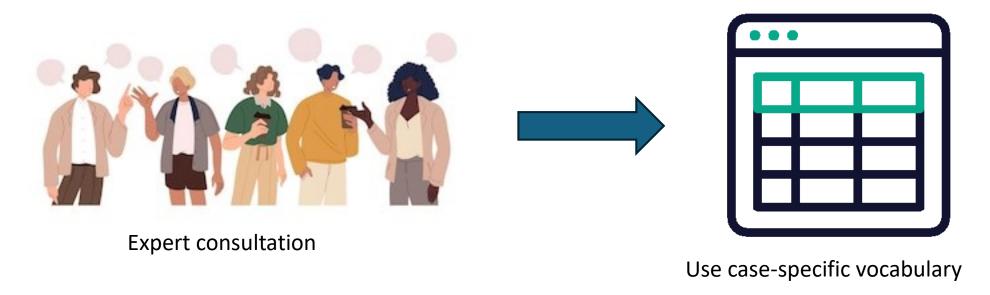
¹FSIS USDA, USA & ²Simon Fraser University, Canada EURGen-RefLabCap

March 12 2024

Outline

- 1. History and goals of ISO 23418
- 2. Contextual data ("metadata") overview and best data standard design practices
- 3. Canadian implementation modularization, customization, reuse
- 4. Tools & databases
- 5. What's next for ISO
- 6. Wrap up

ISO Principles


General

- Identified market need: improve quality, consistency, reproducibility
- Consensus
- Several rounds of international review, feedback, voting

Data Management and Sharing

- 1. Clear meaning (human and machine readable)
- 2. Interoperability (different datasets, systems, processes)
- 3. Harmonization (no organization-specific terminology should take precedence)
- 4. Flexibility (recognizing different needs in different lab settings)
- 5. Maximizing utility of data (prioritizing information types/structures)
- 6. Best semantic practices

Challenges of Status Quo in Standards Development

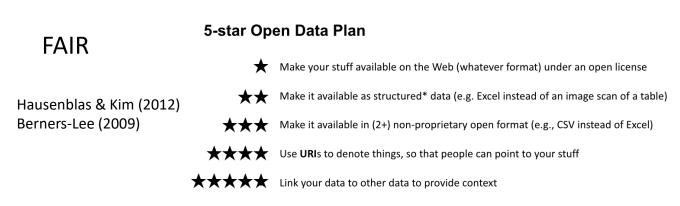
- Narrowly scoped (limits interoperability)
- Organization-specific terminology
- Lack of semantic best practices (no rules, impacts machine-readability)
- Abbreviations, inconsistent structure, word bombs, highly composite terms

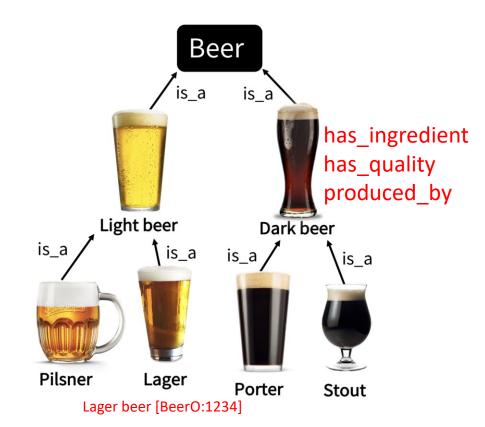
ISO terminology like a "common currency" for communication in genomics and beyond

Why don't we just use "X" vocabulary?

- Organization-specific vocabularies
- Clinical and regulatory terminologies (SNOMED, LOINC, FHIR HL7, CDISC)
- Public repository/public database requirements
- Sectors (One Health animal, human, environment)
- Industry
- Research

Ontologies: Built for harmonization and data linkage


Controlled (standardized) vocabulary **Hierarchy + logic** (linked data, enable classification for analyses)


Universality

- Meanings disambiguated with URIs
- Labels/Synonyms (organization-specific/interoperability)
- Principles and practices to enable reuse (BFO, RO)

Community

- Community of practice (OBO Foundry, >200 interop ontologies)
- Registries/Portals (EBI OLS, Ontobee, BioPortal)
- Languages/Tools (Protégé, LinkML, Robot, OntoFox)

Standards: ISO 23418:2022

Microbiology of the Food Chain — Whole genome sequencing for typing and genomic characterization of foodborne bacteria — General requirements and guidance

Contextual Data Fields

Sample Collection Lab Contact Information

Geographic Location of Sample Collection

Collection Date

Sample Type

Food Product

Food Processing

Environmental Material

Environmental Location

Collection Device

Collection Method

Microbiology Lab Contact Information

Organism

Strain

Isolate

Serotype

Isolation Media

Isolate Passage History

AMR & Virulence phenotypes

ISO standard provides tables and annexes to describe...

- 1. Information about the **sample**
- 2. Information about the **isolate**
- 3. Information about the **sequence**

ISO slim (package of fields and terms) available: https://github.com/GenEpiO/iso2017

Fields and terms sourced and adapted from:

- Agency documentation
- Public repository submission forms
- Domain expert consultations
- Existing standards and ontologies

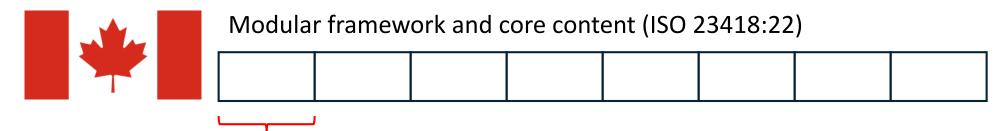
How organizations implement ISO 23418 for metadata management is up to them.

- Makes recommendations, not laws
- Depends on organization's infrastructure, capacity, goals, roles

No one size fits all solutions

- What we can do today, is give you options
- Examples of successful implementations

Emma will describe how ISO 23418 has been used in Canada

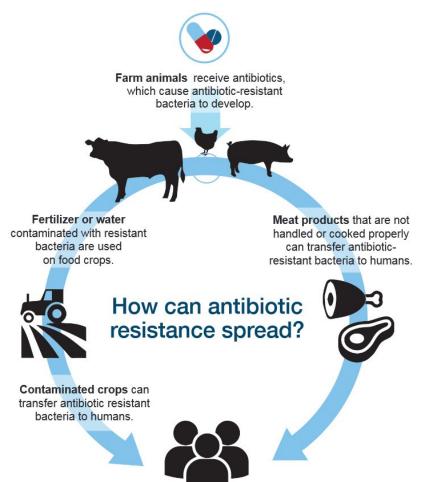


Canada: Federated system, patchwork of jurisdictional powers

- 10 provinces, 3 territories (Federal, Provincial/Territorial, Municipal jurisdictions)
- Many federal agencies with different departments
 e.g. Health Canada, Public Health Agency of
 Canada, Canadian Food Inspection
 Agency, Agriculture & Agri-Food
 Canada, Environment and Climate
 Change Canada, Department of Fisheries & Oceans
- Many labs accredited for ISO 17025
- Most microbiological assays and PCR, increasingly genomics
- Most capacity at federal level, increasing at provincial level as well as local level (e.g. hospitals)
- Most labs have own data management solutions, data sharing difficult, international standards help

Putting ISO 23418 into Practice: Pathways to Implementation

Modules expanded, populated with fields/terms from community-driven ontologies


- Flexible, extensible, customizable, interoperable
- Apply to different use cases/pathogens/programs (Federal/Provincial)
 - SARS-CoV-2 (pandemic)
 - MPOX (epidemic)
 - Wastewater
 - One Health AMR
 - *LIMS modernization (NML e-reqs, intake/storage)
- Different technical implementations (*not accredited)

Thematic Modules:

Database identifiers
Sample collection and processing
Isolate information
Sequencing information
Bioinformatics & QC metrics
AMR testing information
Provenance & acknowledgements

GRDI-AMR standard: ISO-based specification for One Health Antimicrobial Resistance (AMR)

GRDI-AMR: Genomics and Research Development Initiative to support Canada's federal AMR action plan

- Based on ISO framework
 - Scope: Bacteria. **WGS across sectors, commodities, environments, hosts**
- Goal: use genomics and harmonized contextual data to understand foodborne AMR in food supply and environment, identify interventions
- Canadian implementation: Federal Interagency (PHAC, CFIA, AAFC, ECCC, DFO, HC etc)
- also international sharing Uganda, Canada-UK sharing

Adapting ISO Framework for One Health AMR: customized modules and content

Domain Content

- Repository accession numbers and identifiers
- Sample collection and processing
 - Food products
 - Food processing
 - Host/food geo-loc origin vs sampling location
 - **Environments** (abattoir, farm, natural enviros, fisheries)
 - Environmental materials (chicken litter, sediment, water, soil)
 - Anatomical parts/sites (feces, organ contents)
 - Presampling activities (fertilizer, vaccination, decontamination)
 - Sampling/sequencing strategies (bias/limitations)
- Isolate information
- Host information (animals, plants, humans)
- Sequencing methods
- Bioinformatics and quality control metrics
- AMR phenotype testing
- Risk assessment
- Provenance and attribution

Standardized null values (INSDC)

Standardized fields & Picklists (can be updated)

Support docs (ref guide/SOP)

Operationalized using data curation tools

**being integrated across federal genomics ecosystem

Technical Implementations – Tools & Databases

Different ways to implement the standard for data management.

1. Spreadsheetbased templates and tools

Implement ISOcompliant standard (as-is)

e.g. DataHarmonizer

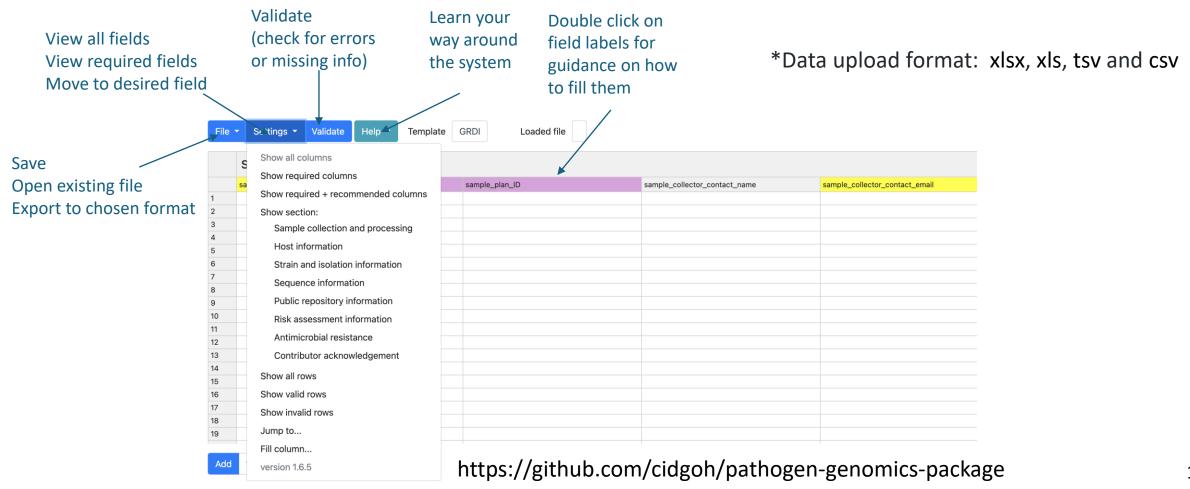
2. Existing Systems

- Mapping
- Automated transformations, development of interchange formats, focus on interoperability

e.g. mapping/interchange:

- National MicrobiologyLaboratory LIMS (Public Health)
- CIPARS (Canadian Integrated Program for AMR Surveillance)
- INSDC BioSample packages

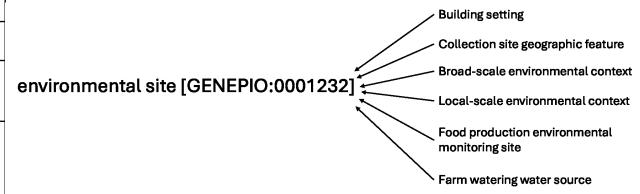
3. New Systems


Implement ISOcompliant standard (as-is)

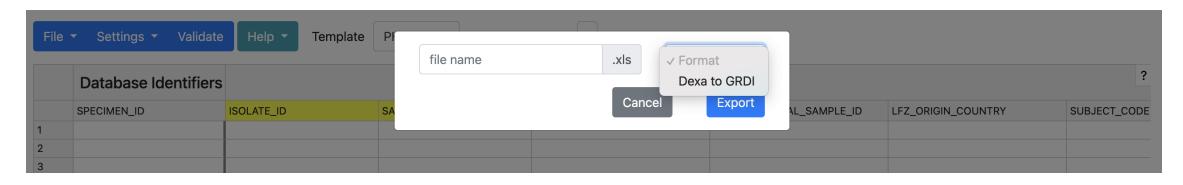
e.g.

- CFIA Genomics db
- Virtual Microbial Resource (graph db)

Spreadsheet-based templates: The DataHarmonizer


- Javascript application
- Download locally, all prov public health labs have local copy
- Extensible, as many templates as needed (under active dev)
- Colour-coding, picklists, curation features, validation

Adapting existing systems: Creating bridges across systems with mapping and exchange formats/tools.


Examples of mapping ISO vocab to other dictionaries/schemas to create "common terminology currency".

LAB LIMS	STANDARD
TEXT_ID	specimen collector sample ID
CUSTOMER	sample collected by
HC_COUNTRY	geo_loc_name (country)
PH_TRAVEL	destination of most recent travel (city)
PH_TRAVEL	destination of most recent travel (state/province/territory)
PH_TRAVEL	destination of most recent travel (country)
PH_TRAVEL	most recent travel departure date
PH_TRAVEL	most recent travel return date

US One Health NCBI BioSample Package: Standard

Mapping and interchange formats enable automated transformations (*ref lab* formats → *community* formats → *downstream* formats).

e.g.

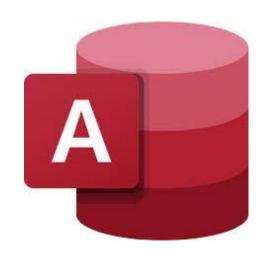
CIPARS (DEXA) → GRDI

NCBI BioSample

NML LIMS format

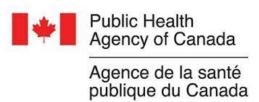
GRDI standard acts as linker "ground truth".

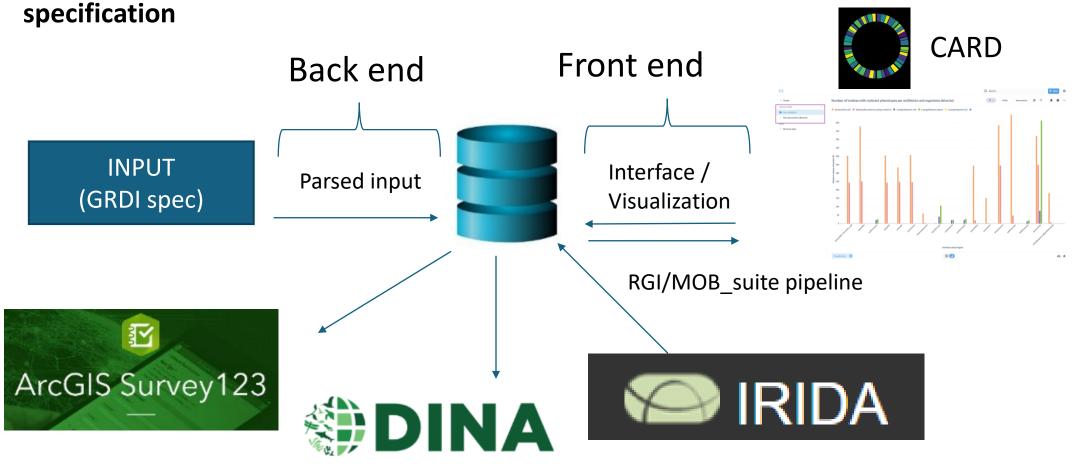
Enter data once, export for different uses!


*data is not stored in the DataHarmonizer, only processed

** Easier to develop tools/dbs for standardized, widely used schemas

New databases & agency integration: The Canadian Food Inspection Agency Genomics Database




- SQL database in an Azure cloud with an Access db front end
- ISO-based GRDI specification forms main schema
- Synonyms captured in tables, some additional customization
- Goal: link directly to agency's cloud computing so metadata can be used in different ways

Virtual Microbial Resource

- "Tinder for microbial collections" (making data matches between organizations)
- Graph database for hosting data, analysis → schema based on ISO-based GRDI

International adoption of the ISO framework

- Global, volunteer organization
- >200 members, 90 organizations,
 30 countries

Scope:

 Reproducibility, interoperability, portability, capacity for public health bioinformatics

Working Groups:

- 1. Data Structures
- 2. Infrastructure
- 3. Pipelines & Visualization
- 4. Training & Workforce
- 5. Ethics & Data Sharing

Reduce the **barrier to entry** for routine sequencing

Promote innovation, collaboration and development from public/private sector

Promote standardization, portability and reproducibility of assays and workflows

Foster the development/resiliency of the global public health bioinformatic workforce

Advance the use of **open data and open source** in public health

Enable global public health to rapidly adapt to changing priorities and emerging threats

Improve surveillance and outbreak response capabilities

Empower more labs to analyze/govern their own data, regardless of resource status

https://www.github.com/pha4ge

https://www.pha4ge.org

@pha4ge

@pha4ge@@mstdn.science

BILL & MELINDA
GATES foundation

Enshrined ISO-based Framework in International Specifications

Customized framework:

PHA4GE SARS-CoV-2 contextual data specification

https://github.com/pha4ge/SARS-CoV-2-Contextual-Data-Specification

PHA4GE Wastewater contextual data specification

https://github.com/pha4ge/Wastewater Contextual Data Specification

New Modules:

PHA4GE PCR primer amplicon scheme specification

https://github.com/pha4ge/primer-schemes

PHA4GE QC tag specification

https://github.com/pha4ge/contextual data QC tags

PHA4GE hAMRonization specification (AMR detection across widely used tools)

https://github.com/pha4ge/hAMRonization

Rewiring & Modernizing LIMS at the NML (national reference lab)

PAGERR – Pathogen Agnostic Genomic Electronic Requisition and Reporting

- Extra modules added to ISO-based framework
- Ontology approach
- Streamline data intake and storage
- Harmonize across disease/pathogen areas
- Better data integration/analysis

"Upgrading the plumbing and re-wiring the NML as we support the expansion of genomics by implementing e-requisitions and reporting to modernize infectious disease detection and surveillance."

Summary: ISO 23418 provides a quality framework for your contextual data

- Improves auditability (e.g. chain of custody)
- Provenance and acknowledgement
- Streamlines re-use and data sharing
- Reduces uncertainty
- Creates expectations for structure, requirements, and completeness
- Can reuse curation training/skills, tools, also agreements
- Future-proofs data

What's Next for ISO?

ISO TC 34 / SC 9
Ad'hoc Group G 5
"Antimicrobial resistance brainstorming"

Ad'hoc Group: Switzerland 25 Participants Pro

Denmark

Netherlands

Japan

Canada

Israel

India

France

Germany

Mandate:

Investigate the need and feasibility to launch standardization work on AMR of bacteria, based on sequencing with a One Health perspective

Invited experts:

- ISO TC 34 / SC 16 (is Standardization of biomolecular testing methods applied to foods, feeds, seeds and other propagules of food and feed crops)
- ISO TC 212 (Medical laboratories and in vitro diagnostic systems)
- ISO TC 276 (Biotechnology)

Acknowledgements

ISO TC34/SC9/WG25

US Department of Agriculture

US Food & Drug Administration

Centre for Infectious Disease Genomics and One Health (SFU)

Public Health Agency of Canada

Canadian Food Inspection Agency

GRDI-AMR

Public Health Alliance for Genomic Epidemiology (PHA4GE)